On Gelfond’s conjecture about the sum of digits of prime numbers
نویسندگان
چکیده
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
The sum-of-digits function of polynomial sequences
Let q ≥ 2 be an integer and sq(n) denote the sum of the digits in base q of the positive integer n. The goal of this work is to study a problem of Gelfond concerning the repartition of the sequence (sq(P (n)))n∈N in arithmetic progressions when P ∈ Z[X] is such that P (N) ⊂ N. We answer Gelfond’s question and we show the uniform distribution modulo 1 of the sequence (αsq(P (n)))n∈N for α ∈ R \Q...
متن کاملGiuga's Conjecture on Primality
G. Giuga conjectured that if an integer n satisses n?1 P k=1 k n?1 ?1 mod n, then n must be a prime. We survey what is known about this interesting and now fairly old conjecture. Giuga proved that n is a counterexample to his conjecture if and only if each prime divisor p of n satisses (p ? 1) j (n=p ? 1) and p j (n=p ? 1). Using this characterization, he proved computationally that any counter...
متن کاملUpper bounds on the solutions to n = p+m^2
ardy and Littlewood conjectured that every large integer $n$ that is not a square is the sum of a prime and a square. They believed that the number $mathcal{R}(n)$ of such representations for $n = p+m^2$ is asymptotically given by begin{equation*} mathcal{R}(n) sim frac{sqrt{n}}{log n}prod_{p=3}^{infty}left(1-frac{1}{p-1}left(frac{n}{p}right)right), end{equation*} where $p$ is a prime, $m$ is a...
متن کاملMinimizing the Number of Carries in Addition
When numbers are added in base b in the usual way, carries occur. If two random, independent 1-digit numbers are added, then the probability of a carry is b−1 2b . Other choices of digits lead to less carries. In particular, if for odd b we use the digits {−(b− 1)/2,−(b− 3)/2, . . . , . . . (b− 1)/2} then the probability of carry is only b −1 4b2 . Diaconis, Shao and Soundararajan conjectured t...
متن کاملDesign and Synthesis of High Speed Low Power Signed Digit Adders
Signed digit (SD) number systems provide the possibility of constant-time addition, where inter-digit carry propagation is eliminated. Such carry-free addition is primarily a three-step process; adding the equally weighted SDs to form the primary sum digits, decomposing the latter to interim sum digits and transfer digits, which commonly belong to {–1, 0, 1}, and finally adding the tra...
متن کامل